
Secfault SecuritySecfault Security

NetHSM

Security Assessment

Report
Final

for

Nitrokey GmbH

Jan Suhr
Rheinstr. 10 C
14513 Teltow

- hereafter called "Nitrokey" -

Secfault Security 



Chapter 

Document History

Version Author Date Comment

0.1 Maik Münch 2020-12-17 First Draft

0.2 Gregor Kopf 2020-12-18 Additions and Corrections

0.3 Dirk Breiden 2020-12-18 Internal Review

0.4 Gregor Kopf 2021-03-13 Additions after Retest

1.0 Gregor Kopf 2021-06-24 Final Version

Secfault Security Confidential Page 2 of 23



Chapter 

Table of Contents
1  Executive Summary..........................................................................................................................4
2  Overview..........................................................................................................................................5

2.1  Target System and Scope..........................................................................................................5
2.2  Test Procedures.........................................................................................................................6

2.2.1  Manual Code Review........................................................................................................6
2.2.1.1  Information Gathering...............................................................................................6
2.2.1.2  Top-down...................................................................................................................7
2.2.1.3  Bottom-up..................................................................................................................7
2.2.1.4  Hybrid........................................................................................................................7

2.2.2  Vulnerability Scope...........................................................................................................8
2.2.3  Targeted Dynamic Tests....................................................................................................8

2.3  Project Execution......................................................................................................................8
3  Result Overview...............................................................................................................................9
4  Results............................................................................................................................................10

4.1  Key Usage Restriction Bypass via Raw RSA Decryption......................................................10
4.2  Use of PBKDF2......................................................................................................................12
4.3  Missing Input Sanity Checks for Several REST Operations..................................................13
4.4  Persistent XSS Via Certificate Upload...................................................................................15
4.5  No Secure Wiping...................................................................................................................16
4.6  Changing the Unlock Passphrase without Knowing It...........................................................17
4.7  Rate Limiting Restrictions......................................................................................................19
4.8  Use of PKCS#1v1.5 Decryption.............................................................................................20
4.9  Missing Range Checks in ECDSA Implementation...............................................................22

5  Additional Observations.................................................................................................................23
5.1  Password Policies...................................................................................................................23
5.2  Plain Text Storage...................................................................................................................23

6  Vulnerability Rating.......................................................................................................................24
6.1  Vulnerability Types.................................................................................................................24
6.2  Exploitability and Impact........................................................................................................24

7  Glossary..........................................................................................................................................26

Secfault Security Confidential Page 3 of 23



Chapter 1 

1 Executive Summary
Secfault Security was tasked by Nitrokey to perform a review of the "NetHSM" solution, which 
aims at providing an Open Source, extensible hardware security module. The focus of the review 
was the solution's software, which was subject to a manual, static analysis. Manual dynamic tests 
have been performed against a Docker image of the solution. Details about the test methodology 
and the scope are provided in section 2.1 and 2.2 of this document.

During the review, a number of vulnerabilities and weaknesses have been identified, which are 
described in detail in section 4 of this document.

One of the more severe issues was that setting the device to unattended mode and then back to 
attended mode currently (i.e., without hardware-level measures such as a TPM in place) implies the 
ability to bring the device into unattended boot mode again if physical access to the device is given.

Other findings of the security review included a persistent Cross Site Scripting issue, bypassing of 
key usage restrictions and a Denial of Service condition.

Most issues have been addressed by Nitrokey during project execution and the findings' retest status
is also provided in the corresponding finding's description in section 4 of this document.

It should be noted that a number of hardware-related aspects have not yet been fully implemented 
(e.g., a TPM or secure element) and hence the review did not focus on threats emerging from this. A
first step for introducing a TPM has been made while the fix verification phase of the project was in
progress, namely the introduction of a device ID stored in the TPM NVRAM. However, the TPM 
integration is not fully finished at the time of writing this report.

The overall design of the solution (e.g., using the formally verified Muen separation kernel, as well 
as implementing the business logic in a high-level language) left a positive impression. These 
design choices rule out a number of possible implementation issues, such as memory corruption 
problems, upfront. The code was found to be well-structured and readable. The identified issues 
have been addressed in a timely manner.

Secfault Security Confidential Page 4 of 23



Chapter 2 

2 Overview
Nitrokey is a company specialized in open source security hardware. The product line covers 
various aspects of IT security including hardware for data encryption, key management and user 
authentication. Nitrokey 's current goal is to get an overview of unknown security-related 
vulnerabilities and design issues present in the new HSM implementation named NetHSM.

2.1 Target System and Scope
Nitrokey tasked Secfault Security to review the NetHSM solution, which aims at providing a 
modern, Open Source HSM. The overall solution consists of several individual components. The 
core business logic is implemented in OCaml, running as a Mirage Unikernel1 on top of the Muen2 
separation kernel. Network connectivity is provided by a separate Linux instance, which is running 
as a Muen subject and bridges the system's network interface towards the HSM Unikernel. 
Furthermore, the storage system is also provided by a separate Linux system running as a Muen 
subject, which provides a git3 interface towards the HSM Unikernel.

The HSM is able to operate in two modes, namely attended and unattended mode. In the unattended
mode, the device derives a Unlock Key from the unique Device ID, while in attended mode the 
HSM waits for the user to provide an Unlock Passphrase. When the unattended boot fails, the HSM 
automatically falls back to the attended boot mode.

Further, a user role model is implemented. Each user account is configured with exactly one of the 
following roles:

• R-Administrator - Access to all operations, exception for key usage operations, i.e. message 
signing and decryption.

• R-Operator - Access to all key usage operations, a read-only subset of key management 
operations and user management operations allowing changes to their own account only.

• R-Metrics - Access to read-only metrics operations only.

• R-Backup - Access to the backup-related operations only.

The review has been performed as a static manual code review with additional manual dynamic 
testing. The tests have been performed against a Docker-based4 version of the system, not running 
on the actual target hardware. The aim of the review was to uncover software-related vulnerabilities
and weaknesses.

Hardware-related attacks have not been considered during the project. Furthermore, the following 
aspects have been defined as out of scope for the assessment:

1 https://mirage.io/
2 https://muen.codelabs.ch/
3 https://git-scm.com/
4 https://docker.io

Secfault Security Confidential Page 5 of 23



Chapter 2 

• TPM, secure element or other hardware-based security devices such as random number 
generators; these are planned to be added at a later stage of development.

• Physical attacks against the system while running in unattended mode

Physical attacks against the hardware platform itself (e.g., attaching probes to measure timings or 
power consumption, writing to flash chips, attaching to serial or debug ports etc.) have not been 
considered during this software-focused review.

The following commit hashes have been considered:

• nitrohsm - c85e4656b7b00e3cfbbf66fc3f803806eaf82626

• nitrohsm-grub - fc2a26b5703adbf282497df9a664a37eea573168

• muen - 53d03f6097df78a50bfe7a448ba85887bc9fcf9e

• nitrohsm-coreboot - de66d04f8da415ce088d794c8a1419ac5d5dfdf5

• nitrohsm-muen-linux - 549738f15da0e5a00275977623be199fbbf7df50

The fix verification was performed based on commit hash 
73ec09896e40a64455341fb6f9b39ef9c839cef7.

2.2 Test Procedures
For an optimal project execution, Nitrokey provided full access to the solution's source code, 
including documentation.

The following subsections will detail on the test procedures, which included a manual code review 
and targeted dynamic tests.

No third-party tools like code analyzers or existing fuzzers have been used during the project.

2.2.1 Manual Code Review

The main activity of the project was the source code review of the provided solution. The code 
review took place in two phases, as described below.

• Information Gathering

• Code Audit

2.2.1.1 Information Gathering

As an initial step prior to performing the actual review, an information gathering phase that collects 
information about the target application and its assisting technologies was performed.

Several aspects of the software are examined in this stage, including:

• Used technology stack

Secfault Security Confidential Page 6 of 23



Chapter 2 

• General software architecture

• Components comprising the solution

Additionally, a conference call was held to further elaborate on the solution's intended security 
promises and it's general threat model.

For performing the subsequent code review step, there are generally three main strategies that can 
be used during the code review of a project. These are: the "top-down" approach, the "bottom-up" 
approach and the "hybrid" approach.

2.2.1.2 Top-down

This approach follows the "Waterfall" software development paradigm. It starts off with the high-
level understanding of the application code via the data collected in the information gathering stage.
It then divides the software into logical and functional units and these are reviewed for possible 
connections to unsafe input handling methods. From an attacker's perspective, controlling the input 
data is the main way of influencing the execution flow of an application, bringing the execution to 
invalid/unauthorized states.

The top-down approach first discovers vulnerabilities in the architecture and logic of the application
and then moves on to evaluate bugs in the implementation details. The approach is well-suited for 
large scale solutions, in particular if the work of multiple review teams has to be performed and 
coordinated.

2.2.1.3 Bottom-up

The "bottom-up" approach starts with the immediate review of the source code of the application, 
without having a high-level view of the software architecture, or the relations between the various 
software modules. The reviewer essentially builds a picture of the application's operation from the 
application's implementation details. This provides the reviewer with an early view of issues and 
threats that are caused by implementation bugs.

For small projects, this approach can be beneficial as it provides a direct insight into the inner 
workings of the target solution, without time-consuming orientation phases.

The "bottom-up" approach however also introduces a considerable delay to the review process for 
larger solutions, as it reevaluates which parts of the project are considered critical, each time a new 
segment of code has been reviewed.

2.2.1.4 Hybrid

The hybrid approach is a mixture of the previous two approaches. It starts off with a high-level 
evaluation of the application and its subsystems. Each subsystem is then reviewed either via the top-
down approach, or the bottom-up approach, depending on a judgment made by the reviewer for that
particular software module. The main advantage of this methods is that the reviewer builds a model 

Secfault Security Confidential Page 7 of 23



Chapter 2 

of possible attacks, based both on the general architecture of the application and its implementation 
details.

For executing this project, the Hybrid approach was chosen to be the most efficient way of 
approaching the codebase. After identifying and obtaining a basic understanding of the individual 
components, their implementations have been reviewed in a bottom-up fashion. This approach was 
significantly eased by the good readability and structure of the provided source code.

2.2.2 Vulnerability Scope

The main focus of the review was the identification of potential and actual vulnerabilities in the 
provided source code. The possible vulnerability types in scope typically depend on the particular 
solution, used languages, frameworks etc.

As the main parts of the solution were written in Ocaml, a language that provides memory-safety 
guarantees, the focus was put on the identification of general logic issues and implementation issues
in the HSM implementation itself. Vulnerability classes in this area include for instance privilege 
elevations or missing authorization checks in the implemented user role model, cryptographic 
issues, insecure storage of sensitive material such as cryptographic keys, or web-related issues 
inherent to the used web-based API.

2.2.3 Targeted Dynamic Tests

In order to verify assumptions and to strengthen the general understanding of the reviewed solution,
targeted dynamic testing has been performed. This includes for instance the web-based API 
implementation, which provides the main interaction facility of the HSM.

2.3 Project Execution
The project has been executed in the time frame from 2020-12-07 to 2020-12-18.

The consultants assigned to this projects were:

• Maik Münch

• Jennifer Gehrke

• Gregor Kopf

Secfault Security Confidential Page 8 of 23



Chapter 3 

3 Result Overview
An overview of the project results is provided in the following table.

Description Chapter Type Exploitability Attack
Impact

Status

Key Usage Restriction 
Bypass via Raw RSA 
Decryption

4.1 Code Medium Low Closed

Use of PBKDF2 4.2 Code Low High Closed

Missing Input Sanity Checks 
for Several REST Operations

4.3 Code Medium Medium Closed

Persistent XSS Via 
Certificate Upload

4.4 Code Low High Closed

No Secure Wiping 4.5 Design Low High To be re-
evaluated

Changing the Unlock 
Passphrase without Knowing 
It

4.6 Code n/a n/a To be re-
evaluated

Rate Limiting Restrictions 4.7 Code Low Medium Closed

Use of PKCS#1v1.5 
Decryption

4.8 Design Low Low Closed

Missing Range Checks in 
ECDSA Implementation

4.9 Design Low Low Closed

Each identified issue is briefly described by its title, its type, its exploitability and by the impact of a
successful exploitation. Technical details for the individual issues are provided in the respective 
sections of chapter 4 of this document. Details regarding the vulnerability rating scheme used in this
document are provided in section 6.

Secfault Security Confidential Page 9 of 23



Chapter 4 

4 Results
The issues identified during the project are described in detail in the following sections. For each 
finding, there is a technical description, recommended actions and - if necessary and possible - 
reproduction steps. For details regarding the used vulnerability rating scheme, please refer to 
section 6 of this document.

4.1 Key Usage Restriction Bypass via Raw RSA Decryption
Summary

Type Location Exploitability Attack Impact Status

Code Keyfender Medium Low Closed

Technical Description

An analysis of the HSM's RSA usage revealed that RSA keys stored on the HSM can be configured 
to be usable for encrypting and/or signing data. However, the decrypt function of the HSM module 
appears to include support for raw RSA decryption5.

Being able to perform a raw RSA private key operation appears to imply the ability to build 
signatures as well (simply by "decrypting" a properly-crafted bit string, in the same way as this is 
done in the actual signature generation). This means that an attacker could be able to use an RSA 
key that has the purpose Decrypt to also compute signatures, hence bypassing key usage 

restrictions.

Enforcing key usage restrictions is not one of NetHSM's primary security goals. Hence, the impact 
of this issue is rated low.

Recommended Action

To address this issue it is advised to restrict the raw RSA decryption to keys that have specified 
SignAndDecrypt as purpose.

Retest Status

The original implementation of the key usage restriction focused on the idea of allowing or denying 
certain operations like signing or decrypting. This concept has been reworked. The key usage 
restriction mechanism now focuses on allowing or denying particular cryptographic operations, 
such as PKCS#1v1.5 signatures or PKCS#1v1.5 decryption. This allows users to make a more 
conscious decision about what a key may be used for, including possible risks of allowing keys to 
be used for legacy schemes. A related issue is documented in section 4.8.

5 Key.decrypt function in /nethsm/src/keyfender/hsm.ml

Secfault Security Confidential Page 10 of 23



Chapter 4 

4.2 Use of PBKDF2
Summary

Type Location Exploitability Attack Impact Status

Code Keyfender Low High Closed

Technical Description

While reviewing the keyfender source code, it was found that the implementation of 

key_of_passphrase in crypto.ml makes use of PBKDF2 for key derivation. While PBKDF2 is 

hardened against a number of attacks like rainbow tables, it is not hardened against parallelizing 
brute-forcing by building custom ASICs. An attacker with access to such ASICs might therefore be 
able to make offline attacks more feasible, which might for example result in the disclosure of the 
key material stored on the HSM or the corresponding backup files.

Recommended Action

As memory-hard schemes like scrypt or Argon2 do include protection against this ASIC-based 
attack vector, replacing the use of PBKDF2 by one of these schemes is recommended.

Retest Status

For deriving cryptographic keys from the unlock passphrase and from the backup passphrase, the 
adjusted HSM implementation makes use of the scrypt key derivation function that provides better 
protection against parallelization and special purpose hardware in offline guessing attacks. The 
currently defined parameters determining the execution costs cannot be evaluated without access to 
the final hardware. Once the hardware is settled, they need to be adapted to the maximum values 
acceptable from the usability perspective.

For storing user authentication passphrases, NetHSM now relies on HMAC-SHA256, i.e., does not 
make use of a memory-hard function. This is due to the fact that protecting user passphrases from 
attackers who can read out the HSM's storage is not one of NetHSM's security goals. Brute-force 
attacks against the unlock passphrase - which is required to access key material - are addressed by 
using scrypt. User passphrases should therefore be chosen uniquely for each NetHSM appliance, in 
order to prevent attackers from mounting brute-force attacks and subsequently using the obtained 
user passphrases on other devices or services.

Secfault Security Confidential Page 11 of 23



Chapter 4 

4.3 Missing Input Sanity Checks for Several REST Operations
Summary

Type Location Exploitability Attack Impact Status

Code API Medium Medium Closed

Technical Description

A review of the exposed REST endpoints revealed that the HSM allows to assign IDs to keys and to
users on the system. Such IDs can be provided either by the device administrator or are 
automatically generated by the HSM. The implementation uses these IDs as keys to store the 
respective items in their key-value (KV) stores. There is a check in place to ensure that user-
provided IDs are alpha-numeric (valid_id function). However, this check is typically only 

performed during a POST or a PUT request; for GET or DELETE requests, the validity check has 
been found not to be in place.

This can result in the deletion of items from the respective KV store, which in turn can at least be 
used to mount a DoS attack against the system.

Recommended Action

To address this issue it is advised to implement the validity check on all REST endpoints.

Reproduction Steps

The following command illustrates the issue:

curl -v --path-as-is -s -k 
https://admin:Administrator@10.0.0.1:8443/api/v1/users/.version.

This request results in the error "message":"Could not write to disk. Check

hardware.". When performing a DELETE request instead of a GET request, the .version file 

from the user store will be removed, which will result in future errors when locking/unlocking or 
rebooting the system, rendering its services unavailable.

Retest Status

Overall checks, rejecting the string .version as an input that will be subsequently processed as part

of a KV store key, were found to be applied. While this addresses the documented issue in the 
current situation, where .version is the only meta data entry in the stores, a more general approach

mitigating this risk should preferred. A holistic utilization of the validation function valid_id 

would also address the issue. It further has the advantage, that it would protect any future meta data 
entries, whose key involves a special character.

Secfault Security Confidential Page 12 of 23



Chapter 4 

4.4 Persistent XSS Via Certificate Upload
Summary

Type Location Exploitability Attack Impact Status

Code API Low High Closed

Technical Description

During the analysis of the web-based API it was found that, when adding a certificate to a key, the 
user can directly specify the Content-Type of the data that is to be stored. While this is convenient 
for storing different types of certificates, it also means that an attacker could set a content type like 
text/html or similar. This would allow them to upload HTML that will be rendered in a user's 

browser after navigating to the URI path /keys/<ID>/cert.

It should be noted that only administrative users can add certificates, which makes a successful 
exploitation of this issue more difficult. However, the impact of such an attack would be 
problematic as the injected content could include scripts that would trigger further actions to be 
performed on the HSM on behalf of the logged-in user, as browsers automatically send along the 
Basic HTTP authentication credentials. Furthermore, an attacker might make the web UI display 
messages asking the user to "change your unlock passphrase for security reasons" or similar, 
tricking users into providing the system's currently valid unlock passphrase to an attacker-provided 
piece of JavaScript code.

In order to trick the user into navigating to the attacker-provided contents, typical attack vectors 
include sending fake emails, including a direct link to the NetHSM web UI.

Please be aware that such an attack can not be performed without user interaction. As furthermore 
an administrative user account is required, the exploitability rating of this finding has been rated 
low.

Recommended Action

To address this issue it should be evaluated, if a restriction of the allowed content types is possible.

Retest Status

The implemented content type restriction addresses the described issue, as the allowed options 
should not lead to a parsing of the file contents as HTML or JavaScript data anymore. However, as 
the behavior depends on the utilized browser and is not standardized, it is advisable to make use of 
the X-Content-Type-Options: nosniff HTTP response header to mitigate the risk of 

MIME/Content sniffing.

Secfault Security Confidential Page 13 of 23



Chapter 4 

4.5 No Secure Wiping
Summary

Type Location Exploitability Attack Impact Status

Design Git storage 
backend

Low High To be re-evaluated

Technical Description

During the review it was found that the HSM implementation makes use of Git as a backend data 
store. All sensitive information in the store is encrypted using a symmetric key (please refer to 
section 5.2 for exceptions to this rule). This encryption key in turn is encrypted with the unlock 
passphrase or the device ID in case of using the unattended boot mode. When switching from 
unattended to attended mode, the key slot encrypted with the device ID is "removed", so that only 
the unlock passphrase can be used to unlock the HSM.

However, as git is used in the backend, restoring the key slot for unattended boot is possible via the 
git history. This means that an HSM that once was in unattended state and has not been fully re-
provisioned afterwards, can be brought to unattended state again by an attacker with access to the 
git backend (e.g., an attacker who has physical access to the device). It should be noted that while 
the use of git offers a simple way for restoring an old device state, it might not be the only option 
for an attacker. As SSDs make use of wear-leveling, attackers might be able to restore old data even 
after deleting them from disk.

It should be further noted that this issue does not only affect the general storage protection, but can 
also be used to recover old keys or user accounts that are considered deleted from the HSM in the 
current state.

Recommended Action

To address this issue, one potential option to consider could be to re-encrypt sensitive information 
after a mode switch, but this could be a major change. Furthermore, attackers could still restore an 
old device state (with all "old" keys still in place). It should be evaluated if the platform offers 
facilities that allow to securely erase sensitive data.

During discussion with Nitrokey, it was found that this issue should be re-evaluated once hardware-
based security measures are in place. It has been added to this report in order to keep track of the 
potential problem in the future.

Secfault Security Confidential Page 14 of 23



Chapter 4 

4.6 Changing the Unlock Passphrase without Knowing It
Summary

Type Location Exploitability Attack Impact Status

Code Keyfender n/a n/a To be re-evaluated

Technical Description

While reviewing the mechanism for changing the unlock passphrase, it was found that the unlock 
passphrase can be changed by an administrator without proving knowledge about the current unlock
passphrase. This can be problematic in situations where an administrative account is compromised, 
but the attacker does not directly have access to the unlock passphrase (which might for example 
only be known to a limited set of persons who memorize it). By changing the unlock passphrase to 
a known value, the attacker might be able to obtain access to the stored key material if they have 
physical access to the system.

The same weakness affects the backup passphrase. While this secret is at first sight considered less 
critical than the unlock passphrase, knowledge of it, in combination with access to a backup file, 
places an attacker in the same, or even better, situation compared to having physical access to the 
HSM's storage medium. Obviously, both preconditions can be achieved when control over an 
administrative account was gained. An administrator always has access to the backup endpoint and, 
again, can change the relevant passphrase without knowledge of the previous value.

A similar reasoning applies to setting the device to unattended mode without knowledge of the 
unlock passphrase. This as well considerably reduces the general security of the HSM and allows an
attacker to circumvent the storage protection at least partially.

Recommended Action

To address this issue it is advised to require the current unlock passphrase for both enabling the 
unattended boot mode and for setting a new one. The same procedure should be applied for the 
backup passphrase.

While discussing this issue with Nitrokey, it has been found that under the current security 
assumption that an administrative user can fully compromise the HSM, this issue is not relevant. As 
described in the NetHSM documentation, the administrative user is deliberately the super user. This 
is required to ensure the availability of the NetHSM system and the stored keys. The implemented 
role and access model allows organisations the separation of duties by assigning other users 
restricted access rights.

However, it has been added to this report in order to be able to re-evaluate possible issues once 
hardware-based measures have been added to the solution.

Secfault Security Confidential Page 15 of 23



Chapter 4 

4.7 Rate Limiting Restrictions
Summary

Type Location Exploitability Attack Impact Status

Code Rate Limiting Low Medium Closed

Technical Description

The review of the rate limiting implementation revealed that the login rate limit implementation is 
essentially based on the remote host, which performs the respective login attempts. Whenever a 
login succeeds, the counter is reset. This means that an attacker who already has access to one user 
account (e.g., an operator account or a metrics account) could use this account to log in between 
brute-force attempts in order to reset the counter.

Recommended Action

To address this issue the rate limiting could be applied on a per account basis. While this opens up 
the ability of Denial-of-Service attacks against selected accounts, it should be considered whether 
disconnecting the HSM from the network is a reasonable measure in a scenario were it is considered
under attack, anyway. Successful authentications to the corresponding account should not reset the 
rate limit counter.

Retest Status

This issue has been addressed by re-working the rate limiting scheme. The new implementation 
considers both, the remote host and the account name. Hence, attackers with access to one user 
account can no longer reset their host-based login counter.

Secfault Security Confidential Page 16 of 23



Chapter 4 

4.8 Use of PKCS#1v1.5 Decryption
Summary

Type Location Exploitability Attack Impact Status

Design Keyfender Low Low Closed

Technical Description

The PKCS#1v1.5 decryption code of the HSM contains an error handling path, which will be 
triggered if a cipher text has been submitted for decryption, which results in an invalid PKCS#1v1.5
padding. In this case, the user will be informed about the error and the process is aborted without 
actually providing data to the user. This however directly implies the ability to distinguish between 
valid and invalid paddings when submitting tampered cipher texts. This directly leads to a possible 
Bleichenbacher attack, which an attacker could leverage in order to perform arbitrary operations 
with the respective private key.

In other settings (such as TLS, where the user is not actually supposed to be able to decrypt data 
with the private key), this would be a severe problem. In the analyzed HSM case, this is different 
insofar as the user has the legitimate ability to decrypt data. However, it should be pointed out that 
an attacker might abuse this issue in order to bypass the key usage restrictions of the HSM: instead 
of requesting a signature operation (which would be forbidden), they instead exploit the padding 
oracle in order to "decrypt" an arbitrary input (which is carefully crafted, so that the decryption 
operation actually is a signature computation).

Furthermore, it should be noted that the use of PKCS#1v1.5 padding in general is not advisable, as 
similar attack scenarios appear to be likely. The combination of allowing PKCS#1v1.5 padding and 
enforcing key usage restrictions is not trivial to achieve.

Enforcing key usage restrictions is not one of NetHSM's primary security goals. Hence, the impact 
of this issue is rated low.

Recommended Action

There are a number of possible solution approaches, ranging from removing support for 
PKCS#1v1.5 over restricting PKCS#1v1.5 to be usable only for keys that have the usage flag 
SignAndDecrypt over adjusting the key usage model entirely.

Retest Status

The original implementation of the key usage restriction focused on the idea of allowing or denying 
certain operations like signing or decrypting. This concept has been reworked. The key usage 
restriction mechanism now focuses on allowing or denying particular cryptographic operations, 
such as PKCS#1v1.5 signatures or PKCS#1v1.5 decryption. This allows users to make a more 

Secfault Security Confidential Page 17 of 23



Chapter 4 

conscious decision about what a key may be used for, including possible risks of allowing keys to 
be used for legacy schemes.

Secfault Security Confidential Page 18 of 23



Chapter 4 

4.9 Missing Range Checks in ECDSA Implementation
Summary

Type Location Exploitability Attack Impact Status

Design Mirage-Crypto Low Low Closed

Technical Description

While reviewing the ECDSA support added to the solution, it was found that one of the used 
libraries, mirage-crypto6, did not properly check the length of messages to be signed when using 
ECDSA. This can enable an attacker to provide two different messages X and Y, which both produce

the same signature value. Please be aware that in practical cases where a hash value is provided as 
"message", this situation is likely not trivial to exploit.

Recommended Action

In order to reduce the attack surface of the implementation, adding a range check for the message to
be signed is recommended, in order to make sure that the message length does not exceed the length
of the curve's group order.

Retest Status

The issue has been addressed in commit 3e470d0d7e3870769af9b7ce0544e4a13d53c619 of 

mirage-crypto.

6 https://github.com/mirage/mirage-crypto

Secfault Security Confidential Page 19 of 23



Chapter 5 

5 Additional Observations
Secfault Security would like to point out a number of general observations and recommendations 
regarding the analyzed system in the following subsections.

5.1 Password Policies
The validation routines for setting passphrases involved in the different HSM use-cases were found 
to enforce a length of at least 10 characters, without further restrictions. While brute-forcing 
passphrases of user accounts is primarily of interest in an online scenario attacking the REST API, 
which can be mitigated by the implementation of brute-force protection measures, the backup and 
unlock passphrases should be able to withstand offline guessing attacks. In the first case, the 
passphrase should protect exported backup files at rest, whereas the unlock passphrase generally 
provides confidentiality to both the HSM contents and the backup files, assuming attended boot 
mode to be present. Based on the final context the HSM is commonly used in, it should be 
considered how the offline guessing attacks can be impeded.

Nitrokey stated that the choice of passphrases is not part of NetHSM's responsibilities. Enforcement
of password policies and user guidance is planned to be realized as part of an associated UI to be 
implemented in future.

5.2 Plain Text Storage
The HSM's general concept is based on the encryption of sensitive data when stored in non volatile 
memory. The decryption uses a key that is preferably (as implemented in attended boot mode) 
derived from a user-provided passphrase. For completeness, two exceptions from this rule are listed 
here.

The backup key is stored in plain text as part of the HSM's configuration. The impact on the 
solution's security, however, is limited, as the key is only used to protect exported backup files. An 
attacker with access to the non volatile memory of the HSM already has access to the contents of 
the backup files after decrypting those by means of the backup key. Accordingly, an attacker could 
only gain advantage from this knowledge when old backup files contain data of interest that is no 
longer stored in the HSM. Please refer to issue 4.5 for the current feasibility of such a situation.

The same storage condition holds true for the TLS private key used to authenticate the REST API 
Web server. While this poses a considerable risk for the HSM security, it is not listed as a separate 
issue as Nitrokey announced to store this key on a connected smart card in the final product. 
Accordingly, the private key storage is not considered to be part of the scope for the current 
assessment.

Secfault Security Confidential Page 20 of 23



Chapter 6 

6 Vulnerability Rating
This section provides a description of the vulnerability rating scheme used in this document. Each 
finding is rated by its type and its exploitability/impact of a successful exploitation. The meaning of
the individual ratings are provided in the following sub-sections.

6.1 Vulnerability Types
Vulnerabilities are rated by the types described in the following table.

Type Description

Configuration The finding is a configuration issue

Design The finding is the result of a design decision

Code The finding is caused by a coding mistake

Observation The finding is an observation, which does not necessarily have a direct impact

6.2 Exploitability and Impact
The exploitability of a vulnerability describes the required skill level of an attacker as well as the 
required resources. Therefore, it provides an indication of the likelihood of exploitation.

Exploitability Rating Description

Not Exploitable This finding can most likely not be exploited.

Minimal Although an attack is theoretically possible, it is extremely unlikely that 
an attacker will exploit the identified vulnerability.

Low Exploiting the vulnerability requires the skill-level of an expert. An 
attack is possible, but difficult pre-conditions (e.g., prior identification 
and exploitation of other vulnerabilities) exist or the attack requires 
resources not available to the general public (e.g., expensive equipment). 
Successful exploitation indicates a dedicated, targeted attack.

Medium The vulnerability can be exploited under certain pre-conditions (e.g., user
interaction or prior authentication). Non-targeted, random attacks are 
possible for attackers with a medium skill level who perform such attacks
on a regular basis.

High The vulnerability can be exploited immediately without special pre-
conditions, by random attackers or in an automated fashion. Only general
knowledge about vulnerability exploitation is required.

The following table describes the impact rating used in this document.

Impact Rating Description

Critical The vulnerability is a systematic error or it permits compromising the system 
completely and beyond the scope of the assessment.

Secfault Security Confidential Page 21 of 23



Chapter 6 

High The vulnerability permits compromising the systems within the scope 
completely.

Medium The vulnerability exceeds certain security rules, but does not lead to a full 
compromise (e.g., Denial of Service attacks)

Low The vulnerability has no direct security consequences but provides information 
which can be used for subsequent attacks.

Informational The observed finding does not have any direct security consequence; however, 
addressing the finding can lead to an increase in security or quality of the system
in scope.

When rating the impact of a vulnerability, the rating is always performed based on the scope of the 
analysis. For example, a vulnerability with high impact typically allows an attacker to fully 
compromise one or all of the core security guarantees of the components in scope. Identical 
vulnerabilities can therefore be rated differently in different projects.

Secfault Security Confidential Page 22 of 23



Chapter 7 

7 Glossary

Term Definition

API Application Programming Interface

DoS Denial Of Service

ECDSA Elliptic Curve DSA

HMAC Keyed-Hash Message Authentication Code

HSM Hardware Security Module

HTML Hypertext Markup Language

HTTP Hyper Text Transfer Protocol

ID Identification

REST Representational state transfer

RSA Asymmetric Cryptosystem named after Rivest, 
Shamir and Adleman

TLS Transport Layer Security

TPM Trusted Platform Module

URI Uniform Resource Identifier

Secfault Security Confidential Page 23 of 23


	1 Executive Summary
	2 Overview
	2.1 Target System and Scope
	2.2 Test Procedures
	2.2.1 Manual Code Review
	2.2.1.1 Information Gathering
	2.2.1.2 Top-down
	2.2.1.3 Bottom-up
	2.2.1.4 Hybrid

	2.2.2 Vulnerability Scope
	2.2.3 Targeted Dynamic Tests

	2.3 Project Execution

	3 Result Overview
	4 Results
	4.1 Key Usage Restriction Bypass via Raw RSA Decryption
	4.2 Use of PBKDF2
	4.3 Missing Input Sanity Checks for Several REST Operations
	4.4 Persistent XSS Via Certificate Upload
	4.5 No Secure Wiping
	4.6 Changing the Unlock Passphrase without Knowing It
	4.7 Rate Limiting Restrictions
	4.8 Use of PKCS#1v1.5 Decryption
	4.9 Missing Range Checks in ECDSA Implementation

	5 Additional Observations
	5.1 Password Policies
	5.2 Plain Text Storage

	6 Vulnerability Rating
	6.1 Vulnerability Types
	6.2 Exploitability and Impact

	7 Glossary

